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I. INTRODUCTION AND SUMMARY OF THE RESEARCH PROGRAM

To properly describe coupled
chemical reactions and gaseous
diffusion in porous sorbent and

catalyst grains, the "pore tree" was / qw ”/

introduced by Simons and Finson / \ I/b

(1979) and Simons (1982). The pore =A

tree represents an isolated sub- Ppropriate

structure, allowing diffusion into and Mean Radius at x
out of porous media without [ :

permitting transport through the t
media. A pore size distribution was
derived statistically and confirmed
empirically for coal, coal char,
sorbents, catalysts and kidney stones
from both men and women. The
pore tree was derived from the pore
size distribution and allows the
orderly migration of a reactant gas

Particle Surface

Figure 1. The Pore Tree

- from the large pores to the small pores (Flg 1). A detailed description of the pore tree and

the coupled transport and chemistry is given by Simons (1982, 1983a). The spatially
dependent transport/reaction equanons are solved for a single pore tree and then the total
contribution of all trees (of all sizes) in the system is obtained by summing the contribution of
each tree that reaches the exterior of the system. This is distinct from the "bulk" transport
approach in which the transport equation for a single pore is integrated over all pores at a
fixed point in space before integrating spatially. The "bulk” transport approach is invalid if
the spatial gradients in the transport equations are implicit functions of pore size. One
example of this implicit pore size dependence is that of the heterogeneous reactions within
porous sorbents (Simons, 1988) and catalysts for which the pore tree structure/transport
model was developed. A second example is that of coupled diffusion and remediation
reactions in the immobile region of soil.

In order to describe the subsurface transport of gas and water in soil, the dispersion of
contaminants, and in-situ remediation of contaminated sites, the pore tree has been extended
(Simons, 1996a) to simulate permeability and bulk transport. The interconnectivity of the pore
structure is illustrated in Fig. 2 and is obtained via a statistical determination of the
"branches” that are common to several trees to allow convection and bulk diffusion through
the large scale (mobile) structure in addition to diffusion and coupled chemical reactions
within the smaller scale (immobile) structure. The statistical analysis has determined that the
probability of pore interconnectivity extends across the entire pore size range, with an
increase in the probability accompanying a decreasing pore size. While permeability is
dominated by the largest pores, it is also important to establish the level of convection and
diffusion that is occurring at the intermediate scales in order to accurately relate large scale
bulk transport, small scale diffusion and coupled chemical reactions.
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a) Pores Interconnected in Plane AA b) Pores Interconnected Out of Plane AA
Figure 2. Interconnectivity of the Pore Tree

The permeability across a given
plane is limited by the largest pores that are
interconnected in that plane (Fig. 2a). The
statistical analysis has determined that
approximately one quarter of one percent of
all large pores are interconnected. This el
establishes a very coarse grid for the 100 r !
permeability which leads to the
measurement scale size errors illustrated in
Fig. 3. The extended pore tree model has
successfully explained the measurement
errors in the permeability of soil due to the
measurement scale size (Shouse, et.al.,
1994) which has indirectly confirmed the
low probability of the interconnectivity.
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The bulk gaseous diffusivity across a
given plane is shown to be limited by the 1 L[l RN
interconnectivity of the smaller branches 1o ! 1
outside of that plane (Fig. 2b). These small SCALE OF MEASUREMENT (m)
pores may be saturated and gas diffusion is
allowed only in pores whose radius is Figure 3. Measurement Scale Errors
greater than that of the largest saturated
pore (r,,). The gas diffusivity is shown to
scale as (permeability)'?/ r,,,. A comparison of the present theory to the diffusivity data of
Washington et. al., (1994) is illustrated in Fig. 4. The gas diffusivity data at approximately
60% saturation verifies the permeability dependence and suggests a saturation radius of the
order of 30 um. Sixty percent saturation at 30 pm is consistent with the statistically derived
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Figure 4. Bulk Diffusivity of a Partially Saturated Soil

pore size distribution function. While the excellent agreement with the data does substantiate
the present theory, the diffusivity in partially saturated soil is very sensitive to an unknown
saturation radius. If bulk diffusivities are to be correlated with field data, such measurements
should attempt to measure the saturation radius.

The permeability and the bulk diffusivity have tested two extreme limits of the pore
structure and pore interconnectivity concepts. Permeability is limited by the in plane
interconnectivity (Fig. 2a) and bulk gaseous diffusion is limited by the out of plane (Fig. 2b)
interconnectivity. Permeability is limited by the large pore interconnectivity and bulk diffusion
is limited by the interconnectivity of the smaller pores. The apparent success of these
concepts over a very broad pore size range suggests that the extended pore tree model will
accurately describe the relationship between large scale convection and small scale diffusive
transport.

A preliminary step in this approach to relate convective and diffusive transport in
various size pores is to describe the subscale convection responsible for hydrodynamic
dispersion (Simons, 1996b). The velocity profile in interconnected pore space is illustrated in
Fig. 5. The largest pores are not interconneced across the porous medium. Hence, the net
velocity within the largest pores is zero. The smallest pores do not support a very large -
convective velocity. Thus, there is a relative maximum of the velocity at some intermediate

pore size r,_/ Ve . Clearly, the fluid in the pore of radius Toax! ye convects ahead of that
in the pores of radius r; and r,. Consider flow in a saturated porous medium in which all fluid
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behind a fixed plane normal to the flow is suddenly injected with red dye. If fluid velocity
v,* 18 associated with pores r,* and r,* , all dyed fluid in pores whose radius is between r,*
and r,* will translate with velocity equal to or greater than v_* and move to a corresponding
location x* or greater. The corresponding concentration profile is illustrated in Fig. 6 where
all red dye would have reached the location Eta = 1 were it not for the velocity variation
within pore size. The "front" of the concentration profile has progressed 30% ahead of the
mean while the slower fluid in the smaller pores has trailed considerable. If we were standing
at the end of a porous flow tube, the concentration passing our location would exhibit a time

dependence illustrated in Fig. 7. The faster fluid breaks through ahead of the mean flow
while the fluid in the smaller pores is delayed.

Data of Elrich, et al., (1966), as reported by Brusseau and Rao (1989), are illustrated
in Fig. 8 and support the current theory of hydrodynamic dispersion. While the long "tail" of
the concentration profile is generally attributed to nonequilibrium, the current pore structure
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model attributes it to the wide pore size distribution occurring in soil. The narrow pore size
distributions occurring in laboratory "soil” will yield a much narrower concentration profile,
i.e., less hydrodynamic dispersion. Future research will be directed toward 1), evaluating the
hydrodynamic dispersion as a function of pore size range in the soil sample and 2), using this
analytic pore structure/ pore transport model to help derive an analytic expression for
hydrodynamic dispersion that replaces the Fickian process in the transport equations.

Analysis of the permeability, bulk diffusivity, and hydrodynamic dispersion has
utilized the interconnectivity of the pores to determine the distribution of the convection
velocity with pore size. This analysis suggests the existence of a permeable sub-range in the
pore structure which does not contribute significantly to the bulk permeability but in which
convection dominates diffusion. It is the balance of the sub-scale convection with the small
scale diffusion that will control contaminant transport and in-situ remediation. The size
distribution of the pores and grains, and the variations in fluid velocity within and between
pores of different sizes is critical to interfacing the transport processes. A methodology has
been developed to couple subscale diffusion, convection and chemical reactions to the
macroscopic transport in order to accurately describe contaminant transport and in-situ
remediation in Ground Water Simulation codes.

A typical species transport equation in permeable soil is of the form:

ac+;@=Dic_'+cM

a o0x h ox? M

where ¢ is the local species concentration, v is the mean convection velocity as determined
by the local pressure gradient and permeability X, and D, is the hydrodynamic dispersion.
The dc/dt term is the true unsteady term and the source and/or sink of species ¢ due to
chemical and/or physical processes within the subscale pore structure is written as ¢ M/M
where M/M represents a bulk rate (1/t) of production or consumption. The bulk rate M/M
will be related to gradients of ¢ on length scales of order millimeters within the subscale pore
structure and cannot be expressed in terms of the dc/dx of the macroscopic transport grid.

To describe the subscale chemical reactions and transport, a "grain" of soil of radius
a, is isolated from the rest of the medium. The grain size will be chosen sufficiently small
that diffusion and coupled chemical reactions will dominate the subscale transport. The pore
tree was developed (Simons, 1982, 1983a,) to treat coupled chemical reactions and diffusion
within immobile porous grains. Generic forms of the immobile solution are illustrated in

Figure 9 where R, represents the limit of kinetic control and R, represents a coupled

kinetic/diffusive solution in which the reaction on the walls of the pore establishes a species
gradient which accelerates the molecular diffusion. The particular solution for contaminant
transport and soil remediation will vary with the number of reactions and kinetic mechanisms
but the generic form of the immobile solution will be similar to that illustrated in Fig. 9.
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Figure 9. Coupling The Mobile and Immobile Solutions

The reactant species must be supplied to the edge of the grain by subscale convection
at a rate depicted by the permeability which is appropriate to the length scale a,. The mobile

solution for M/M is developed in subsequent sections. It is shown that

M _ 6P (-dp/dx)

T i—— a, = Rya, (Convective Limit)
kBK,

The mebile solution indicates that the convective limit increases with grain size while
the immobile solution indicates that the diffusive limit decreases with increasing grain size.
The comparison illustrated in Figure 9 suggests that for large grains, diffusion cannot keep up
with convection while for small grains, convection cannot keep up with diffusion. The
convective and diffusive limits are in balance if and only if

. = Smaller Of [(R, )", ;]

where it has been noted that the solution cannot exceed the limit of kinetic control.

The above expression for the bulk source and/or sink of species ¢ due to chemical
| and/or physical processes within the subscale pore structure is incomplete without specific

models for R, and R, in the immobile region. Future research will be directed toward

developing a library of such models. The most basic processes of contammant diffusion and
adsorption are briefly described below.
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II. ISOLATED PORE TREE: THE STRUCTURE

Following the pore structure theory of Simons and Finson (1979) and Simons (1982),
consider a spherical porous particle of radius a, containing pores of length 1, and radius r,.
The pore dimensions range from a microscale of the order of Angstroms to a macroscale
which is a significant fraction of the particle radius. The radius of the largest pore is denoted
by r... and is given by

ro = 266'P[3K 1)

where O is the total porosity of the particle and K is a constant of integration, approximately
equal to five, which relates the pore length to its radius

2
- Y3
lp =K, rple

The radius of the smallest pore is denoted by r_,, and is given by

Tin =26/B PS5, (3)

where p, is the density of the solid matrix, s, is the specific internal surface area (several
hundred m?/g), and

B =In(rpyy /) @

The particle contains a continuous distribution of pore sizes from r,, to r,,, . The
number of pores within an arbitrary plane of cross-sectional area A and with radius between

1, and r, +dr, is denoted by g (r,)A dr,. The pore distribution function g (r,)is given by

g(r,)=0/2npr, (5)

where g( r,) indicates an average over all inclination angles between the axis of the pore and
the normal to the plane. Due to the random orientation of the pores, the intersection of a
circular cylinder with a plane is an ellipse of average area 2nr,”. Hence, the porosity is the

2nr,? moment of §(rp) and the internal surface area is the 4nr, moment of §(rp).

The above expression for g (rp) was derived from statistical arguments and was
subsequently validated for coal char through comparison of the predicted volume and surface
area distributions with mercury intrusion data (Simons and Finson, 1979). Mercury intrusion
data generally demonstrate a linear increase in the intrusion volume with In(r,). It is the
functional form of this relationship,




Tp

Pore Volume ~ f rp2 g(r,)dr, =lar, (6)

Tmin

that depicts the inverse cubic dependence of g_(rp) on r,. Mercury intrusion data has been

used to validate this pore size distribution function for coal and char derived from that coal
(Kothandaraman et.al., 1984), sorbents (Simons and Garman, 1986), catalysts, and even
kidney stones from both men and women. There is, however, no such validation for soil or
sediments available.

The number of pores within the bulk volume V whose pore radius is between r, and
T,+dr, may be defined by Vf(r,)dr,. The pore volume is expressed as the xr,’l, moment of

f(rp) and the internal surface area is the 2rr,l, moment of f(rp). The pore size distribution
functions ( f(rp) and g (rp) ) are clearly not independent. The definitions of porosity and
internal surface area infer that f(rp) 1s related to §(rp) by

B(r) =fr ), 12 )

Equation (7) simply states that the probable number of pores intersecting an arbitrary plane
increases with the length of the pore and with the density of pores.

The length of a pore is determined by an arbitrary intersection with another pore and
is expressed (Simons and Finson, 1979) as a collision integral over the pore distribution
functions. The analysis suggests that 1, , §(rp) and f(rp) are proportional to r, , 1/r,> and

1/, respectively. The constants of proportionality are obtained from integral constraints, i.e.,
the total porosity and internal surface area contained in the pore structure. The expression for

f(rp) is_given by

43
firy=—— ®
npK,r,

where the constants were defined above.

The pore volume distribution corresponding to these distribution functions is similar to
that utilized in the random pore model (Gavalas, 1980 & 1981). However, the pore tree
model and the random pore model differ dramatically in their choice of the pore aspect ratio
(length to diameter) and its implications with respect to pore branching. The random pore
model allows a single pore to connect two larger pores. This picture lends itself to the
idealization of instantaneous mixing between the pores and requires that the pore aspect ratio
be of the order of one hundred. The pore tree theory uses data for r,,, to imply (via K,) that

8
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all pores possess an aspect ratio of the order of ten. Hence, small pores may connect to larger
pores only on one end and all pores must branch from successively larger pores like a tree or
river system.

Each pore that reaches the exterior surface of the particle is depicted as the trunk of a
tree. The size distribution of tree trunks on the exterior surface of the particle is denoted by
g(r,)4na’dr, where g (r,) is functionally identical to §(rp). Each trunk of radius r, is
associated with a specific tree-like structure. Let N, be defined as the branch distribution
function where Ndr, is the number of pores of radius r, (within size range dr,) in a tree
whose trunk radius is r, . The total number of pores of radius r, in a sphere of radius a
may be expressed as 4/3ma> f( r,)dr, or, as the sum of all pores of radius r, contained

within every tree in the porous sample, plus all pores of radius r, that are themselves the
trunk of a tree. Hence,

%ua3f(rp) = fN, g(r)ama’dr, + 4na’g(r)) )

14

where only trees with trunk radius greater than r, will contain a pore of radius r,. Using the
previously derived expressions for r,,, :g'(rp)and f(rp) , Eq.(9) is identically satisfied by

=r)rt (10)

The branch distribution function completely characterizes the pore tree. The internal
surface area and pore volume associated with each pore tree are denoted by S,(r) and V (1),
respectively, and are expressed as the sum of the contributions from the trunk and that from
the branches.

r

S,(r)=2xnr]l, +f21t r,1,N,dr, (11)
Tooin

Viry=nril+[xr;l,Ndr, (12)
Tinin

Using Eq.(10) for N,, S(r) and V(r,) become

o




S(r)=-2url (i) (1-9) (13)

rmin

rmin

V(r)=nr] z,(l +In (-r_’]] (14)

where the (1-8) term in S, has been included to account for pore combination (Simons,
1979a).

The surface area associated with the pore tree may be several orders of magnitude
greater than the surface area of the trunk. However, the volume of the pore tree may, at
most, be one order of magnitude greater than that of the trunk. It should also be noted that
the above expressions for S, and V, reduce to those appropriate to a single cylindrical pore in
the limit of r, -1, (the leaf of the tree). Furthermore, the integrals of S(r) and V(r,) over

all g(r,) recover the total internal surface area and pore volume of the porous sample.

Each trunk of radius r, is associated with a specific tree-like structure with continuous
branching to ever decreasing pore radii. The radius and number of pores is a unique function
of the distance x into the tree. The coordinate x is skewed in that it follows a tortuous path
through the branches of the tree. Let n(x) represent the number of pores of radius r, at
location x in a tree of trunk radius r,. An analysis (Simons,1982) of this pore tree has
demonstrated that

n(x) = r,z/r;(x) (15)

and the coordinate x is related to 1, by
dr jdx = -1,/1, (16)

The continuous branching model has been used to successfully describe char oxidation
(Simons, 1979b; Lewis and Simons, 1979; Simons, 1982 & 1983a), coal pyrolysis (Simons,
1983b & 1984) and the catalytic cracking of benzene by porous iron oxides (Simons et al.,
1986). It was also used to successfully describe sulfur sorption (SO, and H,S) by porous
calcine (CaO) in the limit of zero utilization (Simons and Rawlins, 1980; Simons et al., 1984)
and was later extended to include CaSO, and CaS deposits (Simons and Garman, 1986;
Simons et al., 1987; Simons, 1988). The subsequent determination of the controlling physical
parameters led to a new concept for the optimization of the sulfur sorption process (Simons,
1991; Simons et al., 1992) through spray drying of water soluble organic calcium solutions to
control the sorbent pore structure.

10
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OI. INTERCONNECTIVITY

The first step in determining the size distribution of the interconnected pores and the

distribution of the permeability is to determine the distribution function 6,(r,,rp) drp which

represents the number of pores of radius r, (within size range dr,) per unit cross section of an
arbitrary plane and also contained within a tree whose trunk radius is r,. Consider an infinite
homogeneous isotropic porous medium and isolate a spherical volume of that medium denoted
by the radius a. Such a volume is illustrated in Fig. 10. The total number of pores of radius
1, (within size range dr,) intersecting plane AA of area wa’ has previously been defined by

§(rp)1t azdrp . The pores in plane AA in this size range may also be determined by

integrating C-;.,(r,,rp)n a2drp over all trees whose trunk intersects the exterior surface of the
porous sample. Hence it follows that

g(r,)na’dr, = f[é,(r,,rp)nazdrp] g(r,)4na’dr, (17)

14

where only those trees whose trunk radius is greater than r, may contain a pore of radius r, .

A solution to Eq. (17) for é,(r,,rp) will not necessarily be unique. Physical arguments

will help determine C_;,(r,,rp) and help ensure that it is the particular solution we seek. Since
N, represents the number of pores of size r, in the tree and the probability of a pore

intersecting a plane is proportional to its length, it follows that (—;,(r,,rp) should be

Figure 10. Spherical Volume of a Porous Medium
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proportional to the product of N, and 1/1, , i.e., proportional to r’/r,>. Eq. (17) is identically
satisfied by a function which differs from r’/r,’ by In(r)).

a (18)
4na?® r; (7 / T,)

ég(rg’rp) =

Note that In(r,/r,,,) introduces an integrable singularity at r,=r,,, such that (-;-,(r,,rp) drp is
finite at r,=r,,, . Hence, there is one and only one largest pore for each reference sphere.

The probability of trees sharing common branches, i.e., the interconnectivity of the

pore structure is described in Fig. 11. We seek the distribution function I (r,) drp which
represents the number of pores (within size range dr, about r,) per unit area of plane AA that
are connected to both sides of the pore structure through pores at least as large as r,. A4 is
defined as the area within plane AA that is open to one side of the porous medium through
all trees of size r,’ (through all pores of size r,’ that are at least as large as r,). Subsequently,

Aq G,(r,,rp) drp represents the number of pores of size r, (within size range dr,) per unit area
of plane AA that are contained in a tree of size range dr, about r, and are also connected to
the opposite side of the porous medium through all trees denoted by r,'. It follows that the
distribution function for interconnected pores in plane AA may be obtained by integrating

A, (-;,(r;,rp)drp over all trees (r,) that are large enough to contain a pore of size r, . Hence,

T(rp)ﬂazdfp = f[Ae (_;,(r,,rp) dr) g(r)2na’dr, (19)

14




From the above definition of A; , A, may be expressed as

Ag = f[f 2nr, nazét(r,,rp) dr,] g(r,)2na’dr, (20)
Ty

where the primes on the variables of integration have been omitted. Evaluating Eq. (20)
yields

na’0In(r /7))
A= 25 ? 21

from which Eq. (19) yields the common branch distribution function.

I(r ) = 9_111_(:"5‘_/2 &) (22)

It has been deduced that the total number of common branches of size r, in an
arbitrary plane scales approximately with the total number of pores of that size in that plane.
Hence, there is a probability of interconnectivity at pore size r, that is logarithmic in pore
size. Defining this probability as Py(r,) via Eq. (22),

In
Pr p) = M (23)
4p
it is apparent that approximately one percent of all pores of all sizes are interconnected
through larger pores.

The broad size range associated with the interconnectivity suggests that a very wide
range of pore sizes control transport and that a complicated mixture of convective and
diffusive transport persists through all of pore space. While permeability is dominated by the
largest pores, it is important to determine the level of convection that is occurring in smaller
pores in order to accurately describe the fine scale transport necessary to assess chemical
reactions. The ability of this pore structure model to describe bulk permeability, bulk
diffusivity and the small scale convection responsible for hydrodynamic dispersion
(Garabedian et al., 1991) are demonstrated before attempting to couple the chemical reactions
to the macroscopic transport.

13




IV. PERMEABILITY

Poiseuille’s law for laminar flow through a cylindrical pore relates the volume flow

dP

rate Qp to the pore radius r,, the viscosity of the fluid p, and the pressure gradient e

. nry dP
- py_4r (24)
% 8u( dx)

whereas the average volume flow rate Q across the cross sectional area A of a porous
medium is used to define the bulk permeability (k) by Darcy's law

p-_ QB 5)
A (-dp/dx)

To determine the permeability, the pore volume flow rate must be related to the
average volume flow rate. Convection across plane AA in Fig. 2 will possess contributions
from two primary sources illustrated in Figs. 2a and 2b. Fig. 2a illustrates the case where the
convection in plane AA is due solely to the pores that are interconnected in that plane.

Fig. 2b illustrates the case where the convection in plane AA is due to the smaller pores in
the pore tree that are interconnected outside of plane AA. This connectivity will translate into
a slower velocity in the pore crossing plane AA but could be significant because 99% of the
pores in plane AA are not interconnected in that plane.

Consider any pore of radius r, in plane AA of Fig. 2b to be the trunk of a tree. Each
pore of size r, within the tree possesses the probability P,( r,) of being interconnected and

each interconnected pore in the tree will carry volume flow rate Qp(rp) . Since there are
N.dr, (Eq. 10: N,=1.’/r,*) pores in size range dr, within the tree, the total volume flow rate

Q'w(rs) through trunk r, in plane AA becomes

Q.(r) = [ Q,(r) Py(r,) N, dr, (26)
or, forr,>>r,,
: ‘i
Q.(r,) = 0% s o/ r‘)(—gﬁ] + Higher Order Terms 27)
: 32up dx
‘ 14
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Within this approximation, it is seen that Q'm(rs) 1s identical to the volume flowing
through the pores that are interconnected within plane AA. i.e.,

Q.(r,) =Q,(r,) P(r) (28)
which demonstrates that all volume flow through plane AA in pore size r, is dominated by the
interconnectivity of size r, in plane AA and not by the interconnectivity of smaller pores in

subsequent branches of the pore tree. Simply stated: case 2a dominates case 2b.

Since all volume flow through plane AA is limited by the interconnectivity of the

pores in that plane, the total volume flow rate Q is obtained by integrating Eq. (24) over all
interconnected pores in area A. Hence,

Q= M(-i{’) f rd I(r )dr (29)

where I( r,) is the "common branch distribution function” given by Eq. (22). The bulk
permeability (k) is then expressed as

T 4T
k= 3 frp I(r,)dr, (30)
Train

Upon integration, Eq. (30) becomes

£ = (efmT (31)
16 p

Equation (31) resembles a dozen other expressions (Dullien, 1979) for permeability
wherein it is concurred that the bulk permeability is dominated by the largest pores in the
medium but the unknown value of that permeability is simply replaced by an unknown fiber
or pore size to the second power. Since the pore size distribution function will be least
accurate at the extreme end of the size range, i.e. at r,,, , no claim can possibly be made that
the numerical constants in Eq. (31) are in any way superior to those derived elsewhere. One

| important advantage of the extended pore tree model is that it characterizes the distribution of
permeability in pore space, a feature that will be important in describing fine scale
contaminant transport and in-situ remediation. A second advantage is the ability to assess
statistical errors in the measurement of the permeability as a function of the measurement
scale size. This exercise is also a good test of the extended pore tree model.
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Consider a soil sample with the following physical characteristics:

Conductivity: v =2 cm/hr
Permeability: k =0.6 Darcy
Porosity: 0 =50%
Pore Aspect Ratio: K,=5

In(r,, /t,:) B =12

From Eq. (31), it follows that
Toe = 300 pm

and subsequently r,, = 20 A. The size of the smallest pore is not an important parameter for
this application but may be readily adjusted through a minor variation in the value of B (e.g.,
for r,,;, of the order of 100 A, B = 10). The bold assertion made in applying this pore
structure model to soil is that the 1/, pore size distribution is valid between r,,;, and r,,.

To investigate the role of the measurement scale size on permeability, consider the
largest pore r,,, contained in the spherical sample of radius "a" as given by Eq. (1). Since
Inex 10 Eq. (31) for the permeability represents the largest pore in the medium, the
corresponding value of "a" is denoted a_,, and represents the largest sample size for which
the pore sizes will scale with the dimensions of the sample. From Egs. (1) and (31)

_24K,P
8Qrax = 64f3

JR (32)

Each sphere of radius a_, will contain one pore of size r,,,. A 20 x 20 grid of these spheres
will be characterized by the dimension 40a,, and contain 400 pores of size r,,.. Each of
these pores possess probability Pi(r,) of being interconnected. Following Eq. (23), P(r,) is
approximately 0.0025 for r, sufficiently close to r.,,. Hence, only one of the 400 largest
pores in this 20 x 20 grid will be interconnected and the error in the measurement of the
permeability will correspond to the statistical error of 100% associated with that of a sample
number of unity. Carrying this argument to a 200 x 200 grid of dimension 400a,,, , there will
be 100 interconnected pores corresponding to a statistical error of 10%. Similarly, a grid of
scale 4000a,,,, will reduce the error to 1%.

Figure 3 illustrates the predicted permeability measurement error associated with the
soil sample characterized above (a,,, =0.3 cm). Note that the errors associated with the
measurement of permeability become negligible as the measurement scale size approaches
several meters. This has been confirmed by the infiltration data of Shouse et. al. (1994). The
measured value of hydraulic conductivity asymptotes to 2 cm/hr at measurement scales
greater than 4 meters. At smaller measurement scales, the inferred measurement error is
calculated under the assumption that the asymptote is precisely 2 cm/hr. The excellent
agreement between the predicted and inferred error supports the extension of the pore tree
model to describe porous permeable media.
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V. BULK GASEOUS DIFFUSION IN PARTIALLY SATURATED MEDIA

The extended pore tree model is readily adapted to partially saturated media through
the assumption that all of the water is contained in pore sizes between 1, and r,,, while only
gas is contained between r,, and r_,.. Since, by Eq. (6), porosity is distributed as In(r,) in
pore space, the porosity associated with the air filled pores (8,) is approximated by

) =M 0 (33)

¢ p
where r,,, is treated as an independent variable of the saturated pore structure. No gaseous
diffusion is allowed within r, < r,,. It is demonstrated that the gas diffusivity scales as 1/r,,
and it is the sensitivity of r,, to the saturated volume that controls the saturated diffusivity.

The diffusive mass flux in a single pore is given by

y 2 [ 9P, 34
M, (r,)=n Dgrp( = ] (34)

where D, is the continuum gas diffusion coefficient (D,=0.2 cm?/s). Just as in the case of
convection, it must be determined whether the mass flux across plane AA in Fig. 2 is
determined by the interconnectivity of the smaller pores out of the plane (Fig. 2b) or by only
those pores that are interconnected in the plane (Fig. 2a). Consider any pore of radius r, in
plane AA of Fig. 2b to be the trunk of a tree. Each pore of size r, within the tree possesses

the probability P,("p) of being interconnected and each interconnected pore in the tree will
carry the mass flow rate Mp(rp) . Since there are N,dr, (Eq. 10: N,=r1/1,%) pores in size

range dr, within the tree, the total mass flow rate Mm(rs) through each and every trunk of
radius r, in plane AA becomes

M.(r) = [ M,(r)) P(r,)) N, dr, (33)

Tsx

Integration of Eq. (35) yields the mass flux (case 2b) for each trunk of radius r,

3
M (ry - s Dg(i‘z r, (—apc) (36)

where a In(r,/r,,) term was eliminated via Eq. (33) and it has been assumed that r, > >r,,.
This introduces an error for the smaller trees close to r,, but since bulk diffusion (D, ) will
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be shown to be dominated by the largest trees, the approximation is valid.

If the mass flux through plane AA is limited by the pores that are interconnected in

that plane (case 2a), the mass flux is expressed as M p(rs) P/(r,), and it is immediately seen
that

M (r)>M/r) P(r,) 37)

i.e., case 2b dominates case 2a. Since the mass diffusion in plane AA is determined by the
pore interconnectivity of the smaller pores outside of plane AA, the saturation of those
smaller pores becomes an important element in the bulk gaseous diffusion.

Since each pore of radius r, in plane AA carries mass flux M_( r,), the bulk diffusion
coefficient is obtained by integrating Eq. (36) over all pores in that plane

Dy = f uDgear, g(r,)dr, (38)

subject to the approximation that the gas is contained in the largest pores (r,, > > I, ).

Dgeearm

= (39
bulk 8PBr,,
Eliminating r_,, via Eq. (31), the bulk diffusivity D, is expressed in terms of the
permeability k.
_2D, 8,k (40)
bulk
rSdl

The bulk diffusivity cannot increase indefinitely with increasing permeability as
inferred by Eq. (40). In deriving this expression, the mass flux through the interconnected
branches of the tree was not constrained from exceeding the diffusive capabilities of the trunk
itself. To correct this potential problem, the limit of Dy, is determined as the maximum
diffusive flux (i.e., D,) in pore r, integrated over all pores in plane AA.

Tonax

D= f:tDr g(r)dr =

Tmin

D6

s (1)
2




D . 1s indicative of existing models for the diffusivity within a completely connected
pore structure and is illustrated in Figure 4 together with the predicted values of Dy, for an
extended range of values of permeability and the saturation radius, r,,.

Model predictions correspond to the measured values of 6,=0.2 and 6=0.5 from
Washington et. al., (1994), and the diffusivity data suggest a value of r,, in the range of
10 pm to 100 um. An exact comparison of the present theory to the least squared fit obtained
by Washington et. al., (1994), suggests a value of 30 pm. This least squared fit also
demonstrates a permeability dependence of the power 0.53 whereas the model predicts 0.5.

While the excellent agreement of the model with the data of Washington et. al., (1994)
does substantiate the present theory, it is apparent that there is a very wide range of possible
values for D, in partially saturated soils which will depend upon an unknown saturation
radius. A two order of magnitude decrease in the saturation radius will increase the bulk
diffusivity by two orders of magnitude and yet the corresponding increase in the air filled
porosity is, by Eq. (33), only 33%. Hence, field measurements of the unsaturated volume are
not sufficiently accurate to correlate bulk diffusivities. If bulk diffusivities are to be correlated
with field data, such measurements should attempt to measure the saturation radius.




V. HYDRODYNAMIC DISPERSION

The distribution of velocity (or volume flux) with pore size has been utilized to
develop a description of hydrodynamic dispersion (Simons, 1996b). The volume flux Qp

through a single pore of radius r, subjected to a pressure gradient % is given by Eq. (24).
"1, (_dp 2
) r = _P T (4 )
Qr) 52 ( dx)

The corresponding fluid velocity v,(r,) within that single pore is

2
V()= 8'_1; (— %) | (43)

and it is evident that the fluid within the larger pores will convect ahead of the fluid in the
smaller pores inducing an apparent diffusional process commonly referred to as hydrodynamic
dispersion.

It has been shown (Eq. 28) that the volume flux Q'”(rp) within all pores of radius r,
across a fixed plane is limited by the interconnectivity P(r,) of the pore structure

Q.(r) =Q,r,) P(r) (44)

and the total volume flow rate Q across the cross sectional area A of the pore structure is
obtained by integrating Eq. (44) over all pores in that cross section. Using the pore size

distribution function denoted by g (rp), Q becomes

Q- [Q.0)EryAdr, (43)

from which permeability k is defined as

o Op =(0'm]2 6)
A(-dpidx) \ 16
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and the mean pore velocity v is defined as the average fluid velocity over the porous area.

5= Q _ k(-dp/dx) (47)
6 Op

The mean velocity associated with the pore radius r, is denoted by Vp(r,) and it is the
variation of v, (r,) about v that causes the "diffusion” or hydrodynamic dispersion of a

specific species about the mean convection velocity v . The aggregate fluid velocity from
plane to plane must be determined as a function of pore radius. In any given cross sectional

plane, the fraction Pl(rp) of the pores were determined to be interconnected and carry fluid
velocity v,(r,) while the non-interconnected pores in that size range do not support a
significant fluid velocity. This was interpreted as an effective fluid velocity v,(r) P,(rp)
occurring in all pores of radius r, in a given cross sectional plane. An expression for v, r)
is utilized which scales with v,(r) P(r,) and recovers the mean convection velocity Vv in the

limit of r, =r,, where r_'p is the pore size associated with velocity v and is yet to be
determined.

V(7)) ) r; ln(rm/rp) 48)
Vo (/7))

The mean velocity associated with pores of size r, will be used to relate a species
concentration profile in pore space to that in physical space using

VnT) _ x (49)
v vt

where x is a spatial coordinate in the concentration profile. That profile will contain the
concentration ¢ moving with mean velocity ¥ and associated with pore size r, were both
¢ and 7, are yet to be determined. The system will lead to the "diffusion” or hydrodynamic

dispersion of a specific species about the concentration ¢ moving with the mean convection
velocity v .

From Eq. (48) it is seen that the mean velocity associated with pores of size T,

possesses a relative maximum at r__/y/e as illustrated in Figure 5. Let r, and r, represent

the two values of 1, corresponding to a particular value of v, (r)). Clearly, the fluid in the

pore of radius r _/ ye convects ahead of that in the pores of radius r, and r,. Consider flow
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in a saturated porous medium in which all fluid behind a fixed plane normal to the flow is
suddenly injected with red dye. All dyed fluid in pores whose radius is between r,* and r,*
will translate with velocity equal to or greater than v,* and move to a corresponding location
x* or greater. The concentration profile c(x)/c, of the red dye at location x will scale with the
volume flux whose velocity is greater than v,(x) from within pores whose radius is between

1,(Va(X)) and ry(v,(x)). From these arguments, it follows that the normalized concentration
profile is given by

c@le, = [Q.0)gC)dr, | [Q.r)E()dr, (50)
where r,(v,,(x)) and r,(v,(x)) are related through Eq. (48),
riln(ry, /r) = rain(ry/r,) 1)

and c(x)/c, becomes

c(x)c,=(rs - rDIri (52)

The concentration profile of the red dye in pore space is readily obtained by solving Eq. (51)
for r,/t, and 1,/T,,, parametric in terms of r,/r, between zero and unity. The corresponding
dye concentration profile in pore space is illustrated in Figure 12. Note that the pore
containing the largest velocity corresponds to the "front" of the spatial profile (Figure 6)
where ¢=0 and the pores containing the lower velocities are at the rear of the spatial profile
where ¢ tends to unity.
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Eq. (50) represents the concentration profile of the red dye in pore size space, pore

velocity space, and physical space. The concentration ¢ associated with the mean velocity v
may be determined from the conservation of the flux of the concentration profile. This is
expressed as

cO o

[_c':) VOA = f (Ci—r’)) Q'n(rp) g(r) Adr, (53)

where the integral 1s split into integrals over the r, and r, branches and obtained numerically
from the profile illustrated in Figure 12. Integration yields

&lc, =05 (54)

It is seen from Figure 12 that there are two pore radii in pore space that satisfy
Eq. (54). On the r, branch r_'p is 0.38332 r,,. and on the r, branch we obtain 0.80428 r_,,.
In each case

(77 | Taax) 107/ 7,) = 0.1409 (55)

and Eqgs. (48) and (49) assign a unique value of x to each value of r, and r,. We define

2
n _x r, In(r,./r) (56)

vt g2 01409

and/or the identical expression in r,. The concentration profile may be expressed in physical
space as a function of m corresponding to that in pore space as a function of r; and r,. The
concentration profile in physical space is illustrated in Figure 6 where all red dye would be
located at the location 1 = 1 were it not for the velocity variation within pore size. The
"front" of the concentration profile has progressed 30% ahead of the mean while the slower
fluid in the smaller pores has trailed considerable.

If we were standing at the end of a porous flow tube, the concentration passing our
location would exhibit a time dependence ( ¢ vs. 1/n) illustrated in Figure 7. The faster fluid
breaks through ahead of the mean flow (¢/c,=0.5) while the fluid in the smaller pores is
delayed. Data of Elrich, et al., (1966), as reported by Brusseau and Rao (1989), are
illustrated in Fig. 8 and support the current theory of hydrodynamic dispersion. While the
long "tail" of the concentration profile is generally attributed to nonequilibrium, the current
pore structure model attributes it to the wide pore size distribution occurring in soil. The
narrow pore size distributions occurring in laboratory "soil" will yield a much narrower
concentration profile, i.e., less hydrodynamic dispersion.
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The local value of the dispersivity required for the concentration profile to be
compatible with the diffusion equation reflects the virtue of expressing hydrodynamic
dispersion as a Fickian process. The hydrodynamic dispersion (D, in length*/time) normalized

by the mean velocity v 1is the dispersivity A. The dispersivity normalized by the mean
convection distance vt is expressed in terms of the concentration profile via

:)._: (1-n)0dc/dn (57)
vt Fc/on?

and illustrated in Figure 13. Figure 13 illustrates that neither A nor A/v¢ is constant, i.e.,
the concentration profile could never be described by a Fickian process. Future research will
be directed toward using this analytic pore structure/ pore transport model to help derive an
analytic expression for hydrodynamic dispersion that replaces the Fickian process in the
transport equations.
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VII. COUPLING SUBSCALE REACTIONS TO MACROSCOPIC TRANSPORT

Analysis of the permeability, bulk diffusivity, and hydrodynamic dispersion has
utilized the interconnectivity of the pores to determine the distribution of the convection
velocity with pore size. This analysis suggests the existence of a permeable sub-range in the
pore structure which does not contribute significantly to the bulk permeability but in which
convection dominates diffusion. It is the balance of the sub-scale convection with the small
scale diffusion that will control contaminant transport and in-situ remediation. The size
distribution of the pores and grains, and the variations in fluid velocity within and between
pores of different sizes is critical to interfacing the transport processes. A methodology is
developed to couple subscale diffusion, convection and chemical reactions to the macroscopic
transport in order to accurately describe contaminant transport and in-situ remediation in
Ground Water Simulation codes.

A typical species transport equation in permeable soil is of the form:

o ;0c _p Pc M (58)

—é; ox h ox2 M

where ¢ is the local species concentration, v is the mean convection velocity as determined
by the local pressure gradient and permeability k, and D, is the hydrodynamic dispersion.
The dc/dt term is the true unsteady term and the source and/or sink of species ¢ due to
chemical and/or physical processes within the subscale pore structure is written as ¢ M/M

where M/M represents a bulk rate (1/t) of production or consumption. The bulk rate M/M
will be related to gradients of ¢ on length scales of order millimeters within the subscale pore
structure and cannot be expressed in terms of the dc/0dx of the macroscopic transport grid.

To describe the subscale chemical reactions and transport, a "grain” of soil of radius
a, is isolated from the rest of the medium. The grain size will be chosen sufficiently small
that molecular diffusion and coupled chemical reactions will dominate the subscale transport.
The pore tree was developed (Simons, 1982, 1983a, 1988) to treat coupled chemical reactions
and molecular diffusion within immobile porous grains. A reactant species will diffuse into
the pores and react on the walls of the pore. The chemical reaction on the walls of the pore
establishes a species gradient which is greater than c/a, and accelerates the molecular
diffusion. The effective molecular diffusion coefficient is the square root of the product of the

molecular diffusivity and the chemical rate constant. The solution for M in this limit scales as
a,’ because transport is limited by diffusion across the surface area a,” while the species
gradient is independent of a,. The particular form of the solution for contaminant transport
and soil remediation will vary with the number of reactions and kinetic mechanisms but the

fundamentals of the problem depict that M will scale as a, in this diffusive limit.

As the grain size is reduced, the diffusive abilities of the grain are able to keep up
with the kinetics of the chemical reactions. The species concentration gradient becomes small
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compared to ¢/a, and the species reaction rate scales with the volume of the reactant. In this
"kinetic limit," M will scale as a,’. Since the local mass of the reactant species M also

scales as a’, it follows that M/M scales as a,° in the kinetic limit and as a,” in the
diffusive limit. This behavior is expressed as

” R, (Kinetic Limit:a,<R,[ R) (39

and

(60)

_‘MZ R,/a, (Diffusive Limit:a >R,/ R,)

where it is assumed that Rl and R2 may be rigorously determined for specific kinetic
processes in soil through direct application of the pore tree/pore transport model.

The reactant species must be supplied to the edge of the grain at a rate compatible
with the rate of species consumption within the grain. Convection in the subscale will
transport the species across the cross section ma,” at a rate depicted by the permeability k,

which is appropriate to the length scale a,. Since Mis pQnx ag2 and Q may be obtained
from equation (25), M/M becomes

M _ cp (k/p)(na;)(~dp/dx)

(61)
cp0(4na)/3)

x|

where p is the density of the reactant species (gas or liquid phase). The integral for the
permeability (Eq. 30) is dominated by the largest pores. If r,, is the largest pore in the grain
and r,,, is the largest pore in the soil, k, appropriate to the grain will scale with k, the
permeability of the soil, via

g (rmg)z(l +2In(ry,,/T,.))
k 2

(62)
where it is assumed that .../ ., is roughly half the width of the entire pore distribution. i.e.,
the (1+2In) term is approximately equal to B (Eq. 4).

The radius (r,,) of largest pore in the grain of radius a, is directly proportional to a,

just as r,,, is directly proportional to a_,,, the radius of the largest grain in which the pore
size will scale with the dimension of the sample. Hence, equation (62) becomes
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k, (a)B

£ = (63)
ko apy,
and, using Eq. (32) for a_, , Eq. (63) is rewritten as
2 n43
ks _“ﬁoT_ (64)
k s16K2pk
such that the convective limit of M/M follows.
Y B .
M _S"CHID) ;= Rya, (Convective Limit) (65)
M 768 p K’

The convective limit of M/M does not explicitly depend on the bulk permeability k because
k is controlled by the largest pores in the soil and cannot distribute the reactants on a scale as
fine as these small grains.

These results are illustrated in Figure 9 and indicate that the convective limit increases
with larger grains while the diffusive limit decreases with increasing grain size. The
convective and diffusive limits are equal at a, = a,

0 = (R R )

where it is apparent that for grains smaller than a_, , the convection cannot keep up with the
diffusion and for grains larger than a., the diffusion cannot keep up with the convection. The

system will attain a natural equilibrium at a, = a,, and the corresponding value of M/M
becomes

M

- Smaller Of [ (R,R)"*, R,] (67)

where it has been noted that the solution at a, = a,, cannot exceed the limit of kinetic control.

The above expression for the bulk source and/or sink of species ¢ due to chemical
and/or physical processes within the subscale pore structure is incomplete without specific

models for Rl and R2 . Future research will be directed toward developing a library of such

models. The most basic processes of contaminant diffusion and adsorption are briefly
described below.
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VIII. IMMOBILE SOLUTIONS: TWO LIMITING CASES

VIII.1 General Approach

The pore structure model described above has been coupled to a transport model
(Simons, 1982) that is capable of describing the simultaneous action of diffusive and
kinetically controlled processes in the immobile region. The pore transport model was
developed to describe quasi-steady char oxidation in which both adsorption and desorption
occur simultaneously. This transport model will be adapted to describe the transient
chemisorption and remediation processes in soil such that we will be able to couple the
subscale reactions to the macroscopic transport as described above.

Each pore that reaches the exterior surface of the particle is depicted as the trunk of a
tree. The size distribution of tree trunks on the exterior surface of the particle is denoted by
8(r)ana’dr, where g(r) is functionally identical to §(rp) . Each trunk of radius r, is
associated with a specific tree-like structure as illustrated in Fig. 1. A pore structure with
continuous branching to ever decreasing pore radii is depicted as being attached to a uniform
trunk of radius r,. The radius and number of pores is a unique function of the distance x into
the tree. The coordinate x is skewed in that it follows a tortuous path through the branches of
the tree. Let n(x) represent the number of pores of radius r, at location x in a tree of trunk
radius r,. An analysis (Simons,1982) of this pore tree has demonstrated that

nx)=r,Ir;®) (68)

and the coordinate x is related to r, and the length of the tree trunk /, by
dr Jdx=-r JI, (69)

When this porous structure is placed in an environment with a reactive gas, the
reactive gas will diffuse into the pore tree and react with the material that constitutes the
walls of the pore. The diffusion of the reactive gas through n pores of radius r, is balanced by
the continuous reaction of the gas at the walls of the pore. We write

d dc
E(n peD,™ r; -‘ix—) =n2nrk,p.c (70)
where ¢ is the mass fraction of the reactant gas, D, is the self diffusion coefficient of the
reactant species, p, is the combined density of all gases in the pore, p, is the combined

pressure (in atmospheres) of all gases in the pore, and k, is the rate constant (g/s/cm*/atm) for
a continuous first order reaction which is a function of particle temperature alone.
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The total reaction rate of the pore tree, M, , is related to the gradient of ¢ at x=0 by

2 dc

M,=-p D nr, Elo (71)

However, to obtain the value of dc/dx at x=0, Eq. (70) must be integrated subject to the
boundary conditions that c=c, at x=0 (r, =r, ) and dc/dx=0 at x=x, (r, =r,;,). The total

reaction rate of the porous particle is obtained by integrating M, over all trees

M, = f M, 4ma’g(r)dr, (72)

Tnia

The pore tree model has been used to successfully describe char oxidation
(Simons, 1979b; Lewis and Simons, 1979; Simons, 1982 & 1983a), coal pyrolysis (Simons,
1983b & 1984) and the catalytic cracking of benzene by porous iron oxides (Simons et al.,
1986). It was also used to successfully describe sulfur sorption (SO, and H,S) by porous
calcine (CaO) in the limit of zero utilization (Simons and Rawlins, 1980; Simons et al., 1984)
and was later extended to include CaSO, and CaS deposits (Simons and Garman, 1986;
Simons et al., 1987; Simons, 1988). The subsequent determination of the controlling physical
parameters led to a new concept for the optimization of the sulfur sorption process (Simons,
1991; Simons et al., 1992) through spray drying of water soluble organic calcium solutions to
control the sorbent pore structure. This transport model will be adapted to describe the
transient chemisorption and remediation processes in soil such that we will be able to couple
the subscale reactions to the macroscopic transport as described above.

VIiil.2 Contaminant Adsorption in Saturated Media

Consider a contaminant in a completely saturated medium. The contaminant will
diffuse into the pore structure (Figure 1) as described by Eq. (70). Assume that the diffusion
is rate limiting and the kinetic term (adsorption rate) in Eq. (70) is relatively fast. Within this
idealization, the walls of the pores between x=0 and x=x_(t) will be completely contaminated
while the walls of the pores for x > x(t) will not be contaminated. All of the reaction is
assumed to occur at (at and around) x.(t) where x.(t) expands throughout the entire pore tree
as time approaches infinity. The first integral of Eq. (70) between x=0 and x=x(t) becomes

2
np,D;xr,

&8

=-M,x,) (73)

where p, denotes the liquid density, D, denotes the contaminant diffusion coefficient and

M,(xc) denotes the net mass flux of the contaminant into the pore tree as a function of time.
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Using n(x) and dr,/dx defined above, Eq. (73) may be integrated subject to the
boundary condition that c=c, at x=0 (r,=r) and ¢=0 at x=x, (r,=r,). The contaminant
concentration in the liquid within the pore structure becomes

_ % In(r,/r,) (74)
In(r,/r,)
and the net mass flux of the contaminant into the pore tree is given by
cnD,p,r’
M,Gr = 2Ll )
Lp

where the In(7,/r,) term has been replaced with B (Eq. 4).

The behavior of M, (x,) near complete contaminant adsorption (for 1, near r,;,) is
incorrect and an exact solution to Eq. (70) is required to precisely simulate this limit.
However, Eq. (75) may be modified to more closely simulate the mass flux in the limit of
complete contaminant adsorption. If the walls of the pore tree adsorb contaminant at the rate
depicted by Eq. (75), the reaction will proceed until the entire surface area S, of the pore tree
is coated with contaminant. Denoting the maximum surface contaminant adsorption level as

g, (mass per unit area), the characteristic time t over which Eq. (75) is valid is owS,/M, .
Using Eq. (13) for the surface area S, of the pore tree, © becomes

2
oo 2ok B (76)
CoDyp Pr T
and Mt(xc) is rewritten as
_ c,nD,p r
M) = o= exp (-t/) a7
t

The total adsorption rate of the porous grain is obtained by integrating M, over all
trees as in Eq. (72) above. At late time, the integral is dominated by the largest pore trees in
the grain. The radius of the largest tree trunk is related to the grain size by equation (1)
and the total adsorption rate of the porous grain is see to be

_3n8¢,D,p,a,
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(78)

T
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As contaminant adsorption nears completion, the total mass adsorbed approaches the
product of the maximum surface contaminant adsorption level @, (mass per unit area) and the
total internal surface area. Hence

~ 81t‘6owag3
3By,

(79)
and the immobile solution for M/ M becomes

r7 I (80)

where

s _ 96 D1PL i

81
T (81)

and the coupled mobile/immobile solution is developed as described in Section VII
% - (RZR )P 82)

where the viscosity | in R3 reflects the properties of the liquid in the saturated medium.

One feature of the immobile solution is immediately obvious: M/M scales as 1/a;?
instead of 1/a, as determined for the coupled reaction/diffusive systems appropriate to
combustion applications. This occurs because the late time concentration gradient within the
grain is ¢,/a, and introduces an additional 1/a, to the scaling relation. It is emphasized that
Eq. (80) is valid only at late time as the contaminant adsorption reaches the total mass

adsorption limit. At early time the integral for M is dominated by the smallest trees, the

corresponding concentration gradient is much greater than c./a, and M is T/ Tmin gTEAtET than
Eq. (80). The early time solution then scales as 1/a, but represents the adsorption rate only at
extremely low fractions of the total mass adsorption limit. This clearly indicates that a
complete immobile model for this process will involve a numerical subroutine rather than a
simple analytic expression. While such a model is quite tractable and would be coupled to the
mobile solution as previously described, it is beyond the scope of the current study.
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VII1.3 Contaminant Adsorption in Unsaturated Media

Consider a contaminated gas in a completely unsaturated medium. The contaminant
will diffuse into and deposit onto the walls of the pores in exactly the same way as described
for the saturated case. Within the approximation that the kinetics of the adsorption are fast
with respect to the diffusion, the immobile solution is given by Eq. (80) with the gas density
p, replacing the liquid density p; and the gas phase contaminant diffusion coefficient D,
replacing the liquid phase contaminant diffusion coefficient D; . The immobile solution is
written as

£=£55 (83)
M a,
where
. 9c¢ D p,r
= 2% 7 Pg Tuin (84)
% 8Pa,

and the coupled mobile/immobile solution is

M_ 25.p (85)
2 - (R Ks)

where the viscosity ( in R, now reflects the properties of the gas in the unsaturated medium.

It is again emphasized that Eq. (85) is valid only at late time as the contaminant
adsorption reaches the total mass adsorption limit and, just as in the saturated case, a
complete model for this time dependent process will involve a numerical subroutine rather
than a simple analytic expression. However, the analytic form of the solution appropriate to
late time offers a relatively simple expression to couple into the Ground Water Simulation
codes for the purpose of testing this method of coupling the mobile and immobile regions.
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IX. SUMMARY

The pore tree model has been extended to describe the permeable pore structure which
characterizes the subsurface transport of gas and water in soil, the dispersion of contaminants,
and the in-situ remediation of contaminated sites. The random nature of the pore structure,
which formed the basis of the statistical derivation of the pore tree, is applied to porous soil
and sand. The interconnectivity of the pore structure is obtained via a statistical determination
of the "branches" that are common to several trees to allow convection and bulk diffusion
through the large scale (mobile) structure in addition to diffusion and coupled chemical
reactions within the smaller scale (immobile) structure. The statistical analysis reported above
has determined that the probability of pore interconnectivity extends across the entire pore
size range, with a slight increase in the probability accompanying a decreasing pore size.
While permeability is dominated by the largest pores, it is also important to establish the level
of convection and diffusion that is occurring at the intermediate scales in order to accurately
relate large scale bulk transport, intermediate scale convection, small scale diffusion and
coupled chemical reactions.

The permeability across a given plane is limited by the largest pores that are
interconnected in that plane. The statistical analysis has determined that approximately one
quarter of one percent of all large pores are interconnected. This establishes a very coarse
grid for the permeability which leads to measurement scale size errors. The extended pore
tree model has successfully explained the measurement errors in the permeability of soil due
to the measurement scale size (Shouse, et.al., 1994) which has indirectly confirmed the low
probability of the interconnectivity.

The bulk gaseous diffusivity across a given plane is shown to be limited by the
interconnectivity of the smaller branches outside of that plane. These small pores may be
saturated, resulting in a strong dependence of the diffusivity on the radius of the saturated
pore. A comparison of the present theory to the diffusivity data of Washington et. al., (1994)
suggests a saturation radius of 30 um. While the excellent agreement with the data does
substantiate the present theory, the diffusivity in partially saturated soil is very sensitive to an
unknown saturation radius. If bulk diffusivities are to be correlated with field data, such
measurements should attempt to measure the saturation radius.

The permeability and the bulk diffusivity have tested two extreme limits of the pore
structure and pore interconnectivity concepts. Permeability is limited by the in plane
interconnectivity (Fig. 2a) and bulk gaseous diffusion is limited by the out of plane (Fig. 2b)
interconnectivity. Permeability is limited by the large pore interconnectivity and bulk diffusion
is limited by the interconnectivity of the smaller pores. The apparent success of these
concepts over a very broad pore size range suggests that the extended pore tree model may be
used to develop the subscale convection necessary to couple the mobile and immobile regions.

Since hydrodynamic dispersion is generated by the fluid velocity differences between
the smaller, convection dominated pores (Garabedian et al., 1991), determination of the
hydrodynamic dispersion in a homogeneous field has been used (Simons, 1996b) to test the
pore interconnectivity/pore structure concepts. Data of Elrich, et al., (1966), as reported by
Brusseau and Rao (1989), support the current theory of hydrodynamic dispersion. While the

33




long "tail" of the concentration profile is generally attributed to nonequilibrium, the current
pore structure model attributes it to the wide pore size distribution occurring in soil. The
narrow pore size distributions occurring in laboratory "soil” will yield a much narrower
concentration profile, i.e., less hydrodynamic dispersion. Future research will be directed
toward 1), evaluating the hydrodynamic dispersion as a function of pore size range in the soil
sample and 2), using this analytic pore structure/ pore transport model to help derive an
analytic expression for hydrodynamic dispersion that replaces the Fickian process in the
transport equations.

Analysis of the permeability, bulk diffusivity, and hydrodynamic dispersion has
utilized the interconnectivity of the pores to determine the distribution of the convection
velocity with pore size. This analysis suggests the existence of a permeable sub-range in the
pore structure which does not contribute significantly to the bulk permeability but in which
convection dominates diffusion. It is the balance of the sub-scale convection with the small
scale diffusion that will control contaminant transport and in-situ remediation. The size
distribution of the pores and grains, and the variations in fluid velocity within and between
pores of different sizes is critical to interfacing the transport processes. A methodology has
been developed to couple subscale diffusion, convection and chemical reactions to the
macroscopic transport in order to accurately describe contaminant transport and in-situ
remediation in Ground Water Simulation codes. The fundamental approach to this application
was described in Section VII and two specific examples appropriate to limiting cases of
subscale transport were developed in Section VIII. Future research will be directed toward
developing a library of models for chemical/diffusive processes in the immobile region such
that they may be coupled to the mobile region via the technique derived above. Such models
will provide Ground Water Simulation Codes with physically realistic submodels for
contaminant transport and remediation studies that can be used to scale data from the
laboratory to the field and from one field site to another.
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XI. NOMENCLATURE

wﬁ?g’ N?}

o

CoUo1©
e =

E3-g
TEE

)

arbitrary cross sectional area

area within A that is connected

radius of sphere in a porous medium

maximum value of a in which pore structure is self similar
radius of arbitrary "grain" of soil

species mass fraction (p./p,)

mean species concentration

hydrodynamic dispersion coefficient

continuum gas phase diffusion coefficient

contaminant diffusion coefficient in the liquid

gas diffusion coefficient in partially saturated porous media
gas diffusion coefficient in fully connected porous media
number of pores per unit volume of radius r,

number of pores per unit area of radius r,
number of pores in tree 1, and in plane A of radius r,

common branch distribution function I = gP,
permeability

permeability of grain a,

constant relating the pore length to the radius
length of a pore of radius r,

length of a tree trunk of radius r,

diffusive mass flux in pore of radius r,
diffusive mass flux in tree r, limited by interconnectivity

mobile/immobile rate (1/t)
number of pores in tree r, of radius r,
number of branches at location x

probability of interconnectivity
gas or liquid pressure

convective volume flow rate across cross sectional area A

convective volume flow rate in pore of radius r,

convective volume flow rate in tree r, limited by interconnectivity

mobile/immobile rate constants

radius of a pore

radius of trunk of tree r,

radius of penetration of contaminant adsorption
maximum pore radius in grain a,

radius of largest pore that is saturated

largest pore corresponding to v, (r,)

smallest pore corresponding to v, (7,)
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specific internal surface area (m’/g)

surface area of pore tree with trunk radius r,

time

volume of pore tree with trunk radius r,

velocity associated with Qp (r)

mean value of vp(rp) in interconnected pore space

mean velocity across area A
axial distance in pore, spatial coordinate
axial penetration of contaminant adsorption

In ( Ty / T )

dimensionless coordinate: Eq (56)

total porosity of the porous medium

unsaturated or "air filled" porosity of the medium
hydrodynamic dispersivity

viscosity of permeate

density of gas phase species ¢

total density of gas phase

density of the solid matrix

density of the liquid

maximum surface contaminant adsorption level (mass per unit area)

time constant for complete contaminant adsorption

pore
tree whose trunk reaches outer edge of medium
tree whose trunk is in arbitrary plane

minimum Size

maximum size
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